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Abstract 

Let k be a field, and let M be a commutative, seminormal, finitely generated monoid, which is 
torsionfree, cancellativc, and has no nontrivial units. Gubeladze [8] proved that finitely generated 
projective modules over kM are free. This paper contains an algorithm for finding a free basis 
for a finitely generated projective module over kM. As applications one obtains new algorithms 
for the Quillen-Suslin Theorem for polynomial rings and Laurent polynomial rings, based on 
Quillen’s proof. @ 1997 Elsevier Science B.V. 

1991 Math. Subj. Class.: 13Cl0, 13Pl0, 14415, 19A49 

1. Introduction 

In 1955, Serre remarked in [15, p. 2431 that it was not known whether there exist 

finitely generated projective modules over k[xl, . . . ,xr], k a field, which are not free. 
This remark turned into the “Serre Conjecture”, stating that indeed there were no such 

modules. Proven in 1976 independently by Quillen [ 141 and by Suslin [17], it became 

subsequently known as the Quillen-Suslin Theorem (QS). 

In 1978, Anderson [2] conjectured that QS holds for affine normal subrings of poly- 

nomial rings generated by monomials, that is, that all finitely generated projective 

modules over such rings are free. In 1988, Gubeladze [8] proved this conjecture, and 

showed that QS holds exactly for monoid rings of seminormal monoids. For normal 

monoids, this says in geometric language that algebraic vector bundles over afine toric 

varieties are trivial (see [6, p. 311). 

* Corresponding author. E-mail: reinhard@nmsu.edu. 

0022-4049/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved 
PZZ SOO22-4049(97)00020-O 



396 R. C. Laubenbacher, C. J. Woodburn I Journal of Pure and Applied Algebra I I7 & I I8 (1997) 395-429 

Several algorithms have been given for QS over polynomial rings [4, 5, 111. Given 

a finitely generated projective module over @xi,. . . ,a+], k a field, presented as the 

cokemel of a matrix with polynomial entries, these algorithms produce a free basis 

for the module. See [20] for applications of these algorithms to problems in control 

theory. From the point of view of solving linear systems of equations with polynomial 

coefficients, one may interpret the theorem as follows. Let A be an n x m-matrix with 

entries in R = k[xl,. ,xr], and let 

A.y=O 

be a system of linear equations. Define a module P via the presentation 

R”’ A R” ------f P --f 0, 

and suppose that P is a projective R-module. Then the Quillen-Suslin theorem implies 

that the solution space of the system Ay = 0 has a free basis, and an algorithm for 

the theorem will compute such a free basis. 

This paper contains an algorithm for QS over seminormal monoid rings, which we 

will call the QS-algorithm. One way to interpret this algorithm in a special case is 

that if the matrix A above has entries which are “sparse” polynomials, in the sense 

that the exponent vectors of appearing monomials lie in a pre-specified submonoid of 

N’, and suppose that n 5 m, and the (n x n)-minors of A span the unit ideal, then the 

QS-algorithm produces m - n polynomial vectors with the same “monomial sparsity 

pattern” which freely span the cokemel of A. 

As an example, suppose that R = k[x, y], and that the matrix A contains only mono- 

mials from the subring k[xy, x2y, xy2] c k[x, y], i.e., the exponent vectors of all mono- 

mials appearing in A lie in the submonoid M of N2 generated by the three vectors 

( 1, 1 ), (1,2), (2,l). Observe that 

k[xy, x2y, xy2] % k[u,u, w]/(uw - u3) 2 kM, 

where kM is the monoid ring of M. Thus, finding an algorithm for QS over the subring 

k[xy, x2y, xy2] is equivalent to finding such an algorithm over the monoid ring kM. If 

we choose A to be the matrix (xy, xy2 - 1, x2y + xy + 1 )‘, then A is defined over our 

subring. There is an obvious way to reduce A to the matrix (1, 0, 0), but that involves 

polynomials not in the subring. 

As a corollary we obtain a QS-algorithm for Laurent polynomial rings (Corollary 42). 

Such an algorithm was first given by Park [12]. We also obtain an alternative version 

of the QS-algorithm for polynomial rings (Corollary 23). It differs from the existing 

algorithms in that it relies on Quillen’s proof rather than on Suslin’s. All essential 

ingredients of the algorithm are implicitly (and, in some cases, explicitly) contained 

in [8] and Swan’s exposition [19] of Gubeladze’s result. All rings which appear are 

either subrings of polynomial rings over a field, or quotients of polynomial rings, 

or localizations thereof. Thus, all required computations can be carried out using the 

theory of Grobner bases, as described in [l, 3, lo]. Finally, since the study of projective 
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modules is properly part of algebraic K-theory, the present paper may be considered 

a contribution to the computational side of that subject. 

We now give a precise statement of the result. 

Theorem 1. Let k be a field, and let M be a finitely generated, commutative, torsion 

free, seminormal, cancellative monoid without nontrivial units. If P is a finitely gen- 

erated projective module over the monoid ring kM, given as the cokernel of a matrix 
with entries in kM, then there is an algorithm to compute a free basis for P. 

We will call such monoids toric, since, if M is normal, then the monoid ring kM 

is isomorphic to the coordinate ring of an affine toric variety, and conversely. The 

contents of the paper are as follows. Section 2 contains a summary of definitions and 

results from [8, 191 pertaining to toric monoids that will be needed subsequently. In 

Section 3 we describe algorithms to carry out “Milnor patching” for certain kinds of 

pullback squares. That is, given a commutative square of rings 

R ------+R, 

1 
R2- R 

such that 

then, with certain extra hypotheses, projective modules over R can be obtained by 

“patching together” pairs of projective modules over RI and R2, 

In Section 4, we reduce the problem for normal toric monoids M to finding an 

algorithm for the “interior” submonoid M* of M. In Section 7, we construct a certain 

sequence of submonoids of M 

M =Mo,M ,,..., Mk = F, 

ending in a free monoid F. In Sections 5 and 6 we construct algorithms to show that 

this sequence has the property that projective modules over kMi are obtained from 

projective modules over kMi+l by restriction or extension of scalars. Since kF is just 

a polynomial ring, we can use one of the existing algorithms for the “ordinary” QS. 

In Section 8, we summarize the different steps of the algorithm in their natural 

order. As an application we give an algorithm for QS for Laurent polynomial rings, 

first proven by Swan [ 181. 

The QS-algorithm proceeds by induction on the rank of the monoid M. If rk( M) = 1, 

then kM is simply a polynomial ring in one variable over k, so the desired algorithm 

is just the Smith normal form. Thus, we will from now on assume the following: 

Induction Hypothesis 1. There is a es-algorithm for all fields and all toric monoids 
of rank less than the rank of M. 
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2. Toric monoids 

All monoids in this paper are assumed to be commutative. We write (gt,. . .,gl) 

to denote the monoid generated by the elements 91,. . . , qt. Generally, we will write 

monoids multiplicatively, except in the examples, which are all given as submonoids 

of Nd for some d. 

Definition 2. A monoid is said to be torsion free if x = y whenever x” = y” for some 

integer II > 0. It is cancellative if ax = ay implies x = y. 

Note that the condition that M be torsion free and cancellative is equivalent to the 

monoid ring kM being a domain. 

For each cancellative torsion free monoid M, there exists an abelian group gp(M) 

which contains M (or at least an isomorphic copy of M), and which is the smallest 

such group, called the group completion of M. Furthermore, gp(M) is unique up to 

isomorphism. The rank of M, denoted rk(M), is defined to be the rank of gp(M). 

Definition 3. A monoid A4 is seminormal if x E gp(M) and x2, x3 E M implies 

x E M, and normal if x E gp(M) and x” E M for some n > 0 implies x E M. The 

normalization of a torsion free monoid M in a group G is 

& = {x E G 1 xn E M for some n > O}. 

Example 4. An example of a monoid which is seminormal but not normal is 

M = ((2,3),(3,5),(3,6),(1,1),(2,1)) cN2. 

The normalization of M is G = ((1,2),(1,1),(2, I)). 

Definition 5. We will call a monoid M toric if M is finitely generated, torsion free, 

cancellative, seminormal, and has no nontrivial units. 

Since a toric monoid M can be naturally embedded in the real vector space 

R @Z gp(M) [ 19, p. 2241, we can view M as a subset of Nd. So a normal toric 

monoid M can be defined as 

M = {(a,,..., ad> E Nd 1 (al,...,ad)‘A 5 o}, 

for some matrix A with d rows, where each row of A corresponds to a bounding 

hyperplane of M in Rd [6, p. 91. (M must be normal in this situation, since we are 

defining it as the set of all lattice points satisfying a collection of linear inequalities.) 

For example, 

M = ((L2),(L lL(2.1)) 

(u1,a2) E N2 I (~1,a2) (1’ J2) mm} 
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has bounding hyperplanes -2x + y = 0 and x - 2y = 0 in R2. Whenever M is given in 

this manner, that is, as the solution set of a system of linear inequalities, it is an integer 

programming problem to find a minimal generating set for M. Such a generating set, 

called a Hilbert basis, can be found by means of an algorithm such as the one given 

in [16, pp. 22-231, which uses Grobner basis theory. 

Definition 6. The interior of a monoid M is 

Int(M) = {x E M 1 f or each y E M there are it > 0,z E M with xn = yz}. 

We use the notation M’ to denote the submonoid Int(M) U { 1). 

Observe that M’ need not be finitely generated, even if M is. If the rank of M is 

finite, then M and M* will have the same rank, however. 

Definition 7. A nonempty submonoid E of a monoid M is extremal whenever x, y E M 

with xy E E implies x, y E E. 

Notice that if we consider M c Nd, it is not difficult to verify that extremal sub- 

monoids of a toric monoid M lie on bounding hyperplanes of M [ 19, Theorem 5.41. 

Lemma 8. ZfM = (gl,...,gt) LY a toric monoid with gp(M) = Zd, then generators 
for all extremal submonoids of M can be found. 

Proof. We will write M additively. First, we eliminate from consideration those gener- 

ators of M which lie in Int(M). Since g E Int(M) if and only if M[-g] = {cJ=, ajgj- 

bg 1 a,, b E N} = gp(M) = Zd [19, Lemma 9.51, testing whether g E Int(M) amounts 

to solving a system of 2d linear equations over N. Once each generator of M has 

been tested for membership in Int(M), let S = (~1 , . . . ,ss} be the largest subset of 

generators of M contained in the complement of Int(M). 

Next, using the set S, we begin forming maximal extremal submonoids of M, relying 

on the fact that if E is an extremal submonoid of M then E n S is a generating set 

for E [19, p. 2251. Starting with sr, consider (~1, ~2). We need to know whether 

or not (~1, ~2) n Int(M) = 0. Note that (sr, ~2) fl It-it(M) # 0 if and only if Zd = 

{ )$I ajgj - NISI - b2S2 I aj,bi E N}, so again this involves solving systems of linear 

equations over N. If (st, ~2) n Int(M) = 8, then (~1, ~2) is contained in some extremal 

submonoid of M [19, Lemma 5.11. We can find a maximal such extremal monoid by 

continuing this process to enlarge the set of generators as much as possible. If (~1, ~2) n 
Int(M) # 0, then consider (st, ss). Repeating the process by considering all possible 

combinations of elements of S, we can obtain all maximal extremal submonoids of M. 

If we repeat the process on each submonoid so obtained and continue in this manner 

until the process terminates, we will have obtained the set of all extremal submonoids 

ofM. q 
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An algorithm to find the extremal submonoids of M is implemented in the program 

PORTA (see [21, Lecture 01). 

Lemma 9. Let M be a toric monoid. Then generators for the normalization of M 
can be found. 

Proof. By [19, Lemma 6.61, M and its normalization M have the same interior, i.e., 

Int(M) = Int(M). Let E be an extremal submonoid of M. Notice that M being semi- 

normal implies E is also seminormal. For if x2, x3 E E for some x E gp(E), then 

x E M. Consequently, by the definition of extremal submonoid, x E E. Thus, an 

extremal submonoid of M is the normalization of an extremal submonoid of M. It 

is therefore sufficient to find generators for the normalizations of all proper extremal 

submonoids of M, which can be accomplished by computing Hilbert bases of the 

bounding hyperplanes of M, since each proper extremal submonoid of M lies on a 

bounding hyperplane of M [19, Theorem 5.41. 0 

The algorithm for the following result was suggested by one of the referees. 

Lemma 10 (Swan [19, Lemma 11.21). Given a toric monoid M = (gl,. . . , gt), there 

exists a free monoid F contained inside M* with gp(F) = gp(M). 

Proof. Since gp(M) is a free abelian group, we may assume that it is equal to Zd for 

some d > 1. Choose an element z E Int(M), for instance, let z = gi + . . . + gt. Using 

the Euclidean algorithm, z can be extended to a basis z = zl,. . . ,zd of Zd. (Note that 

this amounts to carrying out a QS-algorithm for Z). Now choose N large enough such 

that z; + Nzi E M* for all i = 1,. . . ,d. Then zl,z2 + NZi, , . . ,Zd + A!zl is a free basis 

for a free monoid F contained in M* such that gp(F) = gp(M) = Zd. 0 

Lemma 11. Given two normal toric submonoids NI and N2 of a toric monoid M, then 
one can compute generators for the normal toric submonoid Nl n N2 of M. 

Proof. Let N1 = {( al,...,&) E Nd 1 (a 1,. . .,ad) . Ai i 0}, and N2 = {(al,. . . ,ad) E 

Nd I (a~ , . . , ad) A2 < 0}, where Al and A2 are the coefficient matrices of the systems 

of linear inequalities corresponding to the bounding hyperplanes of Ni and N2, respec- 

tively. Then Ni n N2 = {(ai,...,ad) E Nd ) (a 1,. . . ,ad) . B < 0}, where B = (AI/AZ). 
Consequently, generators for N1 n N2 can be found by computing a Hilbert basis for 

the system of linear inequalities formed by considering the bounding hyperplanes of 

both submonoids. 0 

Definition 12. Let M be a normal toric monoid and let II/ : M + N be a homo- 

morphism with $-l(O) = (1). (F or example, II/ might be the defining equation for a 

hyperplane H such that H n M = {l}.) Let m be a positive integer and z E Int(M). 
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Then the homothetic transformation 6, with center z is the map 

O,,, :M -+M 
x H .m,i(x). 

A homothetic submonoid MC”‘) of M with center z is the normalization of the image 

g,(M) in gp(M). (Note that M@) CM’.) 

Lemma 13. Let M = (g,, . . . , gt) be a normal toric monoid and z E Int(M). Then a 

jinite generating set for the mth homothetic submonoid MC”‘) of A4 can be 
jound. 

Proof. By Lemma 8, we can find generators for each of the maximal extremal sub- 

monoids { Ei , . . . , E,,} of M. Note that the generators of each Ei lie on some bounding 

hyperplane of M [19, Theorem 5.41. Therefore, the images of the generators of Ei 
under the homothetic transformation will lie on a bounding hyperplane of MC”‘). Thus, 

M@) is the solution set to the system of linear inequalities resulting from applying the 

homothetic transformation to each Ei, and computing a Hilbert basis for the system 

will yield a generating set for M@). 0 

Lemma 14 (Swan [19, Lemma 9.61). Let M = (g,,...,gr) be a normal toric monoid 
and N a finitely generated submonoid such that gp(N) = gp(M). Let 6, : M + M 
be a homothetic transformation with center z for some z E Int(N) and m E N. Then 
one can find s E N such that (&y(M) c N*. 

Proof. Since (z-‘,N) = gp(N) = gp(M) [19, Lemma 9.51, by repeatedly multiplying 

by z, we can find a p such that z’gi E It(N) for all i. Let s = pm. Then (O,)“(gi) E 

Int(N) C N* for each i, and hence (&y(M) c N*, as desired. 0 

Lemma 15. Let M be a toric monoid, N a submonoid of the same rank as M. Let 

x E Int(N), y E M. Then there exists an integer n 2 0 such that x”y E Int(N). 

Proof. Since N and M have the same rank, we have gp(N) = gp(M). Recall that 

x E Int(N) if and only if N[x-‘1 = gp(N). Therefore we can find z E N and n’ 2 0 
such that y = x-“‘z. Hence x”‘y = z E N, and consequently x”‘+’ y = xny E Int(N). 

q 

3. Milnor patching 

In this section we derive an algorithmic version of a process for constructing projec- 

tive modules using pullback squares, commonly referred to as “Milnor patching,” for 

some special types of so-called Milnor squares and Karoubi squares. First we consider 

Milnor squares. 
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Let RI, R2 be commutative rings with a common quotient ring I?. Assume furthermore 

that the quotient map f : RI - i? is a split surjection. Now consider the pullback 

square 

R ------‘R, 

1 f 
R2 - R, 

where R = {(rl,rz) E RI x R2 1 & = &}. Such a square is a special case of a Milnor 

square. (For a discussion of more general Milnor squares see [19, Section 21.) 

Algorithm 1 (Patching) 

Input: A finitely generated projective RI-module P, of rank r, given as the cokernel 

of a matrix 

Suppose we are also given an isomorphism 

That is, we have a commutative diagram: 

with B an invertible matrix over R, such that 

(1) 

where the upper left-hand block I is an identity matrix. 

Output: A matrix with entries in R, presenting a projective R-module Q, and an 

RI -isomorphism from Q to P over RI, given in the form of a base change matrix for 

the presentation of P. 

Algorithm. As a set, 

Q = {(x,,~) E P x R; ) ~(21) =X2}. 

We need to compute generators for Q. Since the right-hand vertical map f is a split 

epimorphism we can lift B to an invertible m x m-matrix B over RI. Then the cokemel 

of BA is a projective RI-module P’ isomorphic to P via the base change matrix B. 

Now let Q be the cokernel of the n x m-matrix with entries in R, whose RI-part 

is BA and whose R,-part is (1). Note that this gives indeed a well-defined matrix 
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over R. Furthermore, upon extending scalars to RI, respectively Rz, Q extends to P’, 

respectively R;. 0 

Now we consider a certain type of Karoubi square. Suppose that M is a normal toric 

monoid, and N c A4 is a nondegenerate pyramidal extension (see Section 6). That is, 

we have a homomorphism 6 : M + Z, with N = {x E M ( 6(x) 2 0). Furthermore, 

there exists an element u E M such that 6(v) > 0, and M is integral over (N,u), i.e. 

for each x E M there exists n > 0 such that X” E (N, 0). Let ~2’ be the maximal ideal 

of kN* generated by the set N’ \ { 1). Localizing at Jae*, we obtain a special case of 

a Karoubi square: 

Algorithm 2 (Patching) 

Input: A finitely generated projective kM*-module P, presented by a matrix A with 

coefficients in kM*, and an isomorphism 

a : P&e 5 (kM,&)‘, 

represented as in the input for the Patching Algorithm 1. 

Output: A finitely generated projective kN*-module Q and an isomorphism from Q 

to P over kM*, as in the previous algorithm. 

Algorithm. Since kM* is a domain, there is a short exact sequence of kM*-modules 

0 - P - PA* g (kM&)’ - L - 0, 

where the first map is the inclusion and L is the quotient. Restriction of the quotient 

map gives an exact sequence of kN*-modules 

0 - Q - (kN>,)’ - L. 

It is shown in [8, Lemma 141 that the module Q is a finitely generated projective 

kN*-module which extends to P. We now compute a set of generators of Q over kN* 

and an explicit isomorphism from Q to P over kM*. 

Let A be an m x n-matrix with entries in kM* whose cokemel is P. Let U be an 

invertible m x m-matrix with entries in kM,>. such that 

which exists by hypothesis. Thus, we have an exact sequence 

O-P%&* +kM>*)‘-L-o. (2) 
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Let f be a common denominator of the entries in U. Then P becomes free over 

kMi. We obtain a short exact sequence 

0-iP%P++(kMj)‘-L/--+0, 

which becomes sequence (2) upon extension of scalars to kM>.. The kernel K of 

the projection (kM;)’ - L’ is generated as a kM*-module by the projection of the 

columns of U onto the last t coordinates. Define Q’ = K n (/uVf )‘. In order to compute 

generators for Q’ as a kl\r*-module, observe that the elements of K all have denominator 

f. Thus, Q’ is the intersection of K with the kN*-submodule of (WV;)’ generated by 

the elements (l/f ,O,. . ,O), . . . , (0,. . . , l/f). Then 

Q = Q’ n {IntN)f, 

where (hit(N)) is the ideal of kN generated by the set Int(N). The intersections can 

be computed using Griibner basis theory, since they involve only submodules of free 

modules. From the commutative diagram 

O-Q- (kN;)’ A L’A 0 

1 
incl 

1 
= 

1 
0-P A (kM;)‘-----, L’A 0 

we obtain an explicit kN*-monomorphism from Q to P, which becomes an isomorphism 

upon extending scalars to kM*. 0 

4. Reduction to M* 

In this section, let M be a normal toric monoid. We assume the Induction Hypo- 

thesis 1, that we can carry out the QS-algorithm for all fields and all toric monoids of 

rank less than the rank of M. 
We now use Milnor patching on a sequence of Milnor squares to reduce the problem 

to that for monoids of the form M’. Roughly speaking, we obtain M* from M by 

successively deleting extremal submonoids from M, first all those of rank one, then 

the interiors of those of rank two, etc. Each such deletion is accomplished via a Milnor 

square in which the right-hand vertical map is a split surjection, so that we can use 

the Milnor patching algorithm from the previous section. 

Lemma 16. Let E c M be an extremal submonoid. Then the ideal I of kA4 generated 
by M \E is a prime ideal, and the canonical projection kM - kM/I is a split 
epimorphism. 

Proof. That I is a prime ideal follows directly from the definition of an extremal 

submonoid. 

Note that there is a canonical isomorphism kMJI 2 kE, so the inclusion kE - kM 
provides a splitting for the projection. 0 
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Algorithm 3 (Reduction to the Interior) 

Input: A normal toric monoid M and a finitely generated projective kM-module P. 

Output: A finitely generated projective kM*-module Q and an isomorphism from Q 

to P over kM. 

The algorithm proceeds by induction on the rank of M. As before, if rk(M) = 1, 

then M = M*, and there is nothing to be done. So assume that rk(M) > 1. 

Step 1: Compute all extremal submonoids of M (Lemma 8), and list them in order 

of increasing rank: 

MOI = {l},M11,M12,...,Mln,,M2,,...,Mdl =M, 

such that Mij has rank i, and the rank of M is d. 

Step 2: Construct a sequence of Milnor squares as follows. Let 111 be the ideal of 

kM generated by the set M\M 1,) and let Ktr be the submonoid (M\Mll) U { 1) of M. 
Then Zrr is a prime ideal, and we obtain the Milnor square 

Note that kM/Zlr 2 kMII, and that therefore the right-hand vertical map is a split 

surjection. Furthermore, rk(Mrr ) < rk(M), so that the Induction Hypothesis 1 applies 

to MI I. Use it to find an isomorphism from the image i? of P to a free kM/I, r-module. 

Now use the Patching Algorithm 1 to construct a projective kKtr -module PII, and an 

isomorphism to P over kM. 

Now consider Ml2. Since rk(M,r) = rk(Mr2) = 1, it follows that Ml1 n MQ = { 1). 

Let 112 be the ideal of kK11 generated by the set 

KII\WII nM12) = &l\M2 =M\(Ml ‘JM12). 

Then II 2 is a prime ideal of kK11, and the canonical surjection 

kK,, - kK,,/I,2 s kM12 

is split by the inclusion kMr2 - kK Il. Let K12 be the submonoid K11\(KllnMl2)U{l}. 
Then we obtain the Milnor square 

with split surjective right-hand map. Now apply the same construction as above to PII 

in order to obtain a projective kKr2-module Pr2, and an isomorphism to PI 1 over kK11. 
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Continue in this way through all rank 1 extremal submonoids. The last such Milnor 

square is of the form 

kKln, - kKl,n,-1 

1 1 
k- kMl,, . 

Observe that 

Kl,, = W\(Ml U...UMn,))U (1). 

Now consider the first rank 2 extremal submonoid Mzl. First observe that A421 r7 

K,,, = M;1. Let 

K21 = (Kim \M;l) u (1). 

Furthermore, let 121 be the ideal of kK1,, generated by Kl,, \M$. Then we obtain the 

Milnor square 

kK2 1 - kKln, 

1 1 
with the right-hand map a split surjection. Since rk(M21) < rk(M), we may assume 

by induction that there is a QS-algorithm for kM;. 

Continuing in this fashion we finally arrive at the Milnor square 

kM”A Kd-lfl+-l 

1 1 

k A kMd-I,,,_,. 

We have constructed a projective kM*-module Q = P&_l,nd-l and an isomorphism to 

P over kM. 0 

5. The induction step 

This section contains the key result needed for the induction step of the QS-algorithm. 

Several subalgorithms are needed. The first one concerns a special case of the Quillen 

patching theorem [19, Theorem 3.11. The algorithm for its proof is a variant of the 

algorithm in [ll], incorporating part of the algorithm in [13]. 

Proposition 17. Let M be a normal toric monoid, and let R = kM[x] be the poly- 
nomial ring in one variable over kM. Let P be a jinitely generated projective R- 
module. Suppose that one can compute a free basis for PA for all maximal ideals A 
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of kM, and furthermore that there is a QS-algorithm for kh4. Then P is free, and 
there is an algorithm to find a free basis for P. 

Proof and algorithm. Represent kM as k[xl,. . . , xl]/Z where I is the binomial ideal 

generated by the defining relations of A4 [7, Theorem 7.11. Then 

R = kM[x] = k[xl, . . ,x,,x]/I. 

Suppose that P has rank r, and a free presentation: 

R” ARm --+P-0, 

where A is an (m x n)-matrix with entries in R and rank m - r. Then P is free if and 

only if there exists an invertible m x m-matrix U over R and a commutative diagram 

such that 

where I is an identity matrix of size (m - r) x (m - r). We now construct a sequence 

of maximal ideals of kM as follows. Let al E kf be a common root for the generators 

of I in an algebraic closure k of k, and let 

.z = {f E k[xl,...,xt] 1 f(al) = 0). 

Then x is a maximal ideal of k[x 1,. . . ,x,] which contains I. Thus, it corresponds to 

a maximal ideal 4, of kA4. 

We will subsequently write A(x), etc., to indicate that a given matrix is defined over 

the ring kM[x], so that A(0) becomes a matrix over kM. Let VI(X) E GL,(kMA,[x]) 

be such that 

such a Ur can be computed by hypothesis. Let r1 E kA4 be a common denominator 

for all the entries in U1. Then rl $ &?I, by construction. Lift rl to r”l E k[xl, . . ,xt], 

and let a2 be a common zero of the elements in I and r”r. Then define 

z = {f E k[xl,. ,-d I f (a2) = 0). 

As before, A; is a maximal ideal which contains 1. Furthermore, it is different from 

z, since ir E x \ z. So z2 corresponds to a maximal ideal A2 of lo!4 which 
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contains ~1. Let U&X) E GL,,,(kM,kt,) be such that 

IO 
U2(x) .4x) = 0 0 . ( > 

Define r-2 to be a common denominator for all entries in U2, with lifting & E k[xi, . . ,xt]. 

Note that r-2 $L (q), since r1 E ~2’2 but r;! @ JY~. 

Continuing this construction, we obtain r3 $ (rl, rz), and so on. Since kM is noethe- 

rian, we must reach a point where 

+-I ,...,r$) = kM. 

Then, for every d > 1, we can find gi,. . . ,gs E kM such that 

r;lgl + . . .+r,dgs = 1. 

This holds in particular for d = m. Introduce new variables u and z and define 

di(U,Z) = U,-‘(24 +Z)Ui(U) 

for i = 1 , . . . , k. Then Ai is invertible, with entries in kMAz [u,z]. Recall that ri is 

a common denominator for Vi(u) and Ui(u + z). Since 

Ujii-‘(u + Z) = det (Uj(u + z)) . adj (Ui(u + z)), 

m-1 we see that rj is a common denominator for Ui-‘(usz). Therefore, rlF is a common 

denominator for di(n,z). Expand di(u,z) as a polynomial in z with matrix coefficients 

over kM,k, [u] : 

di(U,Z) = diO(U) + dil(U)Z + ” ’ + Llid,(U)Zd’. 

Then Ai,) = di(U,O) = I,. NOW replace z by zrr: 

di(U,Zrlm) = Z, + ryAjl(u)z + rpAi2(u)z2 + . . . + rd,mLlid,(U)Zd’. 

Since ry is a common denominator for di(U,z), it is also a common denominator for all 

dij(u), so that the above expansion is denominator-free, and di(u,zrr) is an invertible 

matrix over M[u,z]. Observe furthermore that 

Lli(U,ZrT) . A(U) = Ui-‘(2.4 + Zrr)Ui(U)A(U) 

= Ui-‘(24 +zrr) 
( 1 

6 z 

= Uj-‘(U + Zr,")Uj(U + Zr~)A(* + m-7) 

=A(u +zry) 

in kM[u,z]. Now define 

S-l S-2 

U(x) = A, - cxgirr, -xg& x - Cxgir,!, -xg,_lr,“_, 
i=l i=l 

. . . Az(x - xglr;“, -xg&) . A 1 (x, -xgl r;“). 
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The s factors in this product are obtained by substitution of variables, hence U(x) is 

invertible over kM[x]. Furthermore, 

U(x). A(x) = A x - &g;ry = A(0). 
\ i=l / 

But A(0) is a matrix over kM, so that the projective module it represents is free, and 

we can find a free basis by hypothesis. This completes the proof. 0 

This algorithm is needed as a subroutine in the next result, which represents the 

induction step in our main algorithm. 

Proposition 18. Suppose that M is a toric monoid and there is a QS-algorithm for 

M, then there is a QS-algorithm for the monoid ring k[M x Z]. 

Proof and algorithm. Let P be a finitely generated projective module over k[M x Z]. 
Represent k[M x Z] as kM[x,x-‘I. Let S, respectively T, be the set of manic polyno- 

mials in k[x], respectively k[x-‘I. Proposition 19 below implies that it is sufficient to 

find free bases for Ps and PT. But k[M x Z], = k(x)M, so we can find a free basis for 

Ps by hypothesis. Similarly, k[M x Z]r = k(x-‘)M Z k(x)M. (The last isomorphism 

follows from the fact that k is a field.) Therefore it is sufficient to give an algorithm 

for the following result. 

Proposition 19. Let P be a finitely generated projective kM[x,x-‘]-module. If 

P $3 k(x-‘) is free, then P is free. 

To begin the proof, let U be a base change matrix with entries in k(x-‘)M which 

induces an isomorphism between P@k(x-‘) and a free k(x-‘)M-module, which can be 

found by hypothesis. Let f E k[x-‘1 be a common denominator for the entries of U. 

Then PI is free over kM[x,x-‘]I, with the same matrix U inducing an isomorphism 

to a free module. Choose n 2 0, such that f = xdng with g E kM[x] and g(0) = 1. 

Consider the commutative square 

kM[x] A kM[x,x-‘1 

1 1 
kMb1, A kM[x,x-‘I, = kM[x,x+ 

(3) 

In order to continue the proof of Proposition 19, we need the following result. 

Lemma 20. Let R be a domain, and f, g E R such that fR+gR = R. Then the square 

is isomorphic to a pullback square. 
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Proof. We need to show that 

E RI x R, 1 4”. = b in RI-e . 
s t 

Since R is a domain, we have that ta = sb. Since f and g are comaximal, so are any 

of their powers. Let xs + yt = 1, and define r = xa + yb. Then sr = sxa + syb = 

sxa + tya = a, so that r = a/s in RI. Likewise r = b/t in R,. 0 

We will show that square (3) has the Milnor patching property. (In fact, it is a 

so-called localization square, or generalized Karoubi square; see [ 19, p. 2191.) 

Rewrite the matrix U over kM[x,x-‘1~ so that all denominators are equal to f = 

x-“g. Let c( E Z be such that xa . U does not contain any occurrence of x-’ 

in its entries. Replace P by the projective module x”P, which is isomorphic to P 

as a kM[x,x-’ ]-module. After inverting f, xaP becomes isomorphic to a free module, 

with an isomorphism given by the matrix x*U. This matrix has common denomi- 

nator g and numerators in IdM[x], hence is a matrix over kM[x],. Let F be the free 

kM[x],-module given by the columns of the matrix (x”U)-’ . Then F becomes EQUAL 

to x”P upon extending coefficients to kA4[x,x-‘I,. Presentation matrices of xaP and 

F are 

diag(x*)A and 

respectively, where 1 stands for an identity matrix of the appropriate size. The matri- 

ces become equal over kM[x,x-‘I,, hence they lift to a matrix B over kM[x], which 

presents a projective module Q that becomes equal to x’P over kM[x,x-‘1. In partic- 

ular, if Q is free, then it follows that P is free also. 

It is therefore sufficient to give a constructive proof of the following result. 

Lemma 21. If all projective modules over kM are free, then the same is true for 

kM[x]. 

The key ingredient in the proof is Gubeladze’s version of Roberts’ Theorem, applied 

to our situation. 

Theorem 22 (Gubeladze [8, Theorem 2.31). Let (R,M) be a local ring, and A an R- 

algebra. Let P be a finitely generated A-module, and S a multiplicative set of A which 

is regular on A and P. Let n be a nonnegative integer. Suppose further that 

(i) for every f E S, AIfA is a finitely generated R-module; 

(ii) the map SL,(As) - SL,(As) is onto (where the bar denotes reduction module 

the maximal ideal & of R), and the group of units lJ(&) is generated by the 

images of U(A) and U(As); 



R. C. Laubenbacher. C. J. Woodburn I Journal of Pure and Applied Algebra I 17 & I18 (1997) 395- 429 411 

(iii) As contains a subalgebra B such that As = A + B and _4!B c J(B) (the Jacobson 

radical of B); 
(iv) Ps ?z’ Ai and p S An. 
Then P E A”. 

Algorithm 4 (Algorithm for Lemma 2 1) 

Input: A toric monoid M, so that there exists a QS-algorithm for the monoid ring of 

M over all fields, and a finitely generated projective kM[x]-module P of rank t, with 

presentation 

kM[x]” 2 kM[xlM - P - 0. 

Output: An m x m invertible matrix U over kM[x] such that 

u.c= IO ( 1 00 

By Quillen’s patching theorem it is enough to find such a matrix U for PA for all 

maximal ideals J# of kM. Let R = kMA and A = R[x]. Let S CA be the multiplicative 

set of manic polynomials in x with coefficients in k. Then we have a commutative 

diagram 

where 

2 = A/AA = k’[y], As = (kM,,&x])s = k(x)M1, & = k’(y), 

with k’ = kM/A, a field extension of k. The map 

SL,(As) = SLI (W)MA) - SL,(&) = SLl (k’(y)) 

is surjective, since k’(y) is a field, so SLt (k’(y)) = Et (k’(y)), the subgroup generated 

by all elementary matrices, and the right vertical map is surjective. Since As is a local 

ring with quotient field k’(y), the corresponding map on unit groups is surjective. Thus, 

Condition (ii) of Roberts’ Theorem is satisfied, and so is (i). 

Since (9~)s = (Ps)~ (subsequently denoted by Ps), we obtain an isomorphism to 

a free module by hypothesis, given by the commutative diagram 
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where U E GL,(As) and 

Since A = k’[y], we obtain a similar isomorphism 

to obtain a matrix V E GLm(A) such that 

by using the Euclidean algorithm 

IO vc= o. . ( ) 
Let q,..., ut be the As-basis of PS that maps to the canonical basis of Ai under the 

isomorphism induced by U, i.e the image in Ps of the last t columns of U-‘. Similarly, 

let V ,, . . . , i& in p form the A-basis for P which maps to the canonical basis of A’ under 

the isomorphism induced by V. LiIl the Vi E p to 01,. . . , ut in P, using Griibner basis 

theory. Thus we obtain two free bases (17,) and {ci} for ps = Ps. Compute a base 

change matrix W E GL,(&) which maps {i&} to {rii}. If Z = det(W), a unit in &, 

then 

The product of the first two factors is in SL,(&), hence lifts to a matrix in SLt(As). 

Likewise, the third factor lifts to an invertible matrix, since units lift. Thus, W lifts to 

an invertible matrix W E GL,(As). Now replace the basis ~1,. . , ut of Ps by the basis 

w-‘u,,..., W-‘ut. Then for this new basis of Ps we have that iii = t7i for all i. 

Let P’ = c A . Ui be the A-submodule of Ps generated by the ui. Since {Ui} is a 

free As-basis of Ps, it follows that it forms a free A-basis for P’. Furthermore, the 

modules P and P’ have the same image in Ps, since Ui = Vi. We will now construct 

an explicit isomorphism between P and the free A-module P’. 

Given an element a = c cI,Ui E Ps, we can write 

with gi,gi,gjl E A, h, E S, and deg(gy) < deg(hi), where deg denotes the degree as a 

polynomial in X. Then 

a= cc. Ui + C g;Ui. 
I 

Furthermore, 

y(2.l; = g’; = pi = 4ifi + ri fi 
Wi = qjWi + ZWiy 

with w, E P and deg(r;) 5 deg(f,). We obtain a similar decomposition for g(‘ui. 
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Now we apply this decomposition to the elements Uj - vj to obtain 

c Si 
Uj - Vj = 

cWi+ 
c 

S:Wi, 

with deg(hi) 2 deg(gi). It is shown in [9, p. 1161 that the elements 

v, + c g:Wi, j= l,...,t, 

form a free A-basis of P. This completes Algorithm 4, needed to complete the proof 

of Lemma 21, hence that of Propositions 19 and 18. 0 

We now summarize the results of this section. 

Algorithm 5 (Induction) 

Iput: A normal toric monoid A4 for which there exists a QS-algorithm, and a finitely 

generated projective module P over k[A4 x Z], presented by a matrix A. 

Output: An invertible matrix II over k[M x Z] such that 

lJ*A = 
IO ( > 00 . 

Step 1: Represent k[M x Z] as &I&X,X-‘1. Compute such a U over k(x-‘)M, which 

is possible by the hypothesis on M. 

Step 2: Construct a projective module Q over kM[x] by Milnor patching applied to 

the generalized Karoubi square (3), as described after Lemma 20, which extends to P. 
Step 3: Use the Quillen patching theorem algorithm (Proposition 17) to find a free 

basis for Q, with Algorithm 4 as the local loop to compute free bases for Q over the 

localizations at the various maximal ideals produced by the patching algorithm. Let V 
be the invertible matrix affecting the base change in the presentation of Q over kM[x]. 

Then the desired U is obtained from V by extension of scalars. 0 

Corollary 23. The algorithm for Lemma 21 applied to the free monoid generated by 

XI,..., x, provides a es-algorithm for the polynomial ring k[xl, . . . ,x,.1. 

6. Pyramidal extensions and projective modules 

Definition 24. A pyramidal extension is an extension of monoids N c M such that 

(i) M is a normal toric monoid. 

(ii) There is a homomorphism 6 : M -+ Z with N = {x E M ) 6(x) 2 O}. 

(iii) There exists an element v E M such that 6(v) > 0, and M is integral over 

(N, v), i.e. for each x E M there is n > 0 such that x” E (N, v). 

A pyramidal extension will be called nondegenerate if there is an x such that 6(x) < 0. 

Note that if N c M is a nondegenerate pyramidal extension then rk(N) = rk(M) 

[19, p. 2341. 
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Let N c A4 be a nondegenerate pyramidal extension of toric monoids, and let P be 

a projective module over kM*. The most complicated ingredient in the QS-algorithm 

is to construct a projective module over kN* which extends to P under extension of 

scalars. This construction will then be applied to the admissible sequence constructed 

in Section 7, in order to complete the QS-Algorithm. We proceed by carrying out 

Milnor patching for the Karoubi square 

kN* A kM’ 

1 1 
kq;. A kM.>,, 

where J%‘* is the maximal ideal of kN* generated by N* \{ l}, after showing that all 

projective modules over the lower right-hand ring are free. Thus, we need to prove 

Proposition 25. Let N c M be a nondegenerate pyramidal extension of normal toric 

monoids, and let A* be the maximal ideal of kN” generated by N*\{ 1). If P is a 
finitely generated projective kM*-module, then one can find an explicit isomorphism 

from 9He to a free kM2,-module. 

The proof will proceed by induction on the rank of M. If rk(M) = 1, then kM = kM* 

is a polynomial ring in one variable over k, and P itself has a free basis, computed 

by using the Euclidean algorithm. So we may assume that rk(M) > 1. 

Let N c M be a nondegenerate pyramidal extension of toric monoids, and P a finitely 

generated projective kM*-module, with the free presentation 

A 
(kM*)” ---+ (kM*)P 4 P - 0 

where A is a matrix with entries in kM*. Choose z E Int(N), and find an integer m 
large enough so that all entries of A are contained in the homothetic submonoid M@). 

Such an m exists by Lemma 14, and can be computed as in Lemma 13. 

Then P is obtained by extension of scalars from the projective k(M(“))-module Q 

defined by the same presentation matrix A. Furthermore, 

is also a nondegenerate pyramidal extension [ 19, Lemma 10.11. Let A’ be the maximal 

ideal of kN@‘) generated by Int(N(“‘)). Since PA* is obtained by extension of scalars 

from Q.&t, it is sufficient to find an isomorphism from Q.&f to a free kM(m)-module. 

That is, we need to prove the following: 

Proposition 26. Let N CM be a nondegenerate pyramidal extension of normal toric 
monoids, and J&’ the maximal ideal of kN generated by N \ { 1). If P is a finitely 
generated projective kM-module, then one can find an isomorphism from Pd to a free 
kM,d-module. 
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Proof and algorithm. Let u E h4 be as in (iii) of Definition 24. We first show that it 

is sufficient to find an isomorphism from P, to a free kM[v-‘]-module. Observe that 

kM[v-‘1 % k[(M, u-l)], 

and 

@&u-i) Z M’ x (u) “M’ x z. 

Since rk(M’) < rk(M), we can apply the Induction Algorithm 5 to the monoid M’ x Z. 

Therefore the proof of Proposition 26 will be complete if we can show the following 

result. 

Proposition 21. With hypotheses as in Proposition 26, if P, is free, then PA is free. 

Proof and algorithm. The proof proceeds by applying Roberts’ Theorem to the ring 

R = kN_4 and the R-algebra A = kM A, similar to the proof of Lemma 21. First we 

define a grading on the algebra A. 
Suppose N c A4 is a pyramidal extension with w E M such that 6(w) > 0 and 

M is integral over (N, w). Then w lies on an extremal submonoid E = (u) of M 

[19, Lemma 8.31. If w = (al ,..., ad) E Nd, then u = (al/a,. . . ,ad/a) where a = 

gcd(al, . , ad). We now replace w by u, and call it a vertex of the pyramidal extension. 

Notice that if A4 = (gi, . . . , gs), then by direct computation we can find m > 0 with 

each gT E (N, u). So, x”’ E (N, u) for each x E M implying xm = ua y for some a > 0 
and y E N. For the rest of the discussion, such an m will be fixed. 

Definition 28. (i) Let x E M. Then deg(x) = min{a 1 0 ( 2” = uay for some y E N}. 

(ii) Let f = ~1x1 + . . + rtxt E A where ri E R and Xi E M. Then deg(f) < p if 

and only if deg(xi) < p for i = 1,. . . , t. 

(iii) If f = u” + g with deg(g) < deg(ua), we call f manic. 

The following result provides us with a division algorithm in A. 

Proposition 29 (Swan [19, Corallary 8.51). Let f, g E A with g manic. Then there 
are q, Y E A with deg(r) < deg(g) such that f = qg + r. 

Proof. Begin by initializing q := 0 and Y := f. If deg(r) < deg(g), we are done. 

Suppose deg(r) 2 deg(g) = deg(@) = am. Write Y = rixi + ... + rtxt, where each 

ri E R and X; E M. Then one of the Xi is such that deg&) > deg(u”) = am. 

Claim 30. We can write X, = U'xIi where x”i = xiu-a E M with deg(&) < deg(xi) -am. 

If we replace Y with r - r,x”ig and q with q + rix”i, then f = qg + r. If deg(r) is 

still greater than or equal to deg(g), repeat the process. Since the degree of Y strictly 

decreases with each pass, the process must eventually terminate with f = qg + r and 

dcg(r) < deg(g). 0 



416 R. C. Laubenbacher, C. J. Woodburn I Journal of‘ Pure and Applied Algebra I1 7 & 118 (I 997) 395-429 

Proof of Claim 30. Since N c M is a pyramidal extension, there exist Wi E N and 

b 2 0 such that XT = Gw;. But deg(xi) > am SO XT = tYm(tPamWi) or (x~P)~ = 

Vh--amWi. Therefore, x”, = XiKa E M, since M is normal. Notice that deg(Zi) < b-am 5 

deg(x,) - deg(v’). 0 

Let S c A be the multiplicatively closed set of manic elements. Consider the com- 

mutative square 

Let 

be a presentation for P. First we find isomorphisms from PS and 13 to free modules. 

First of all, since v E 5’ and there exists an isomorphism from P, to a free A,-module, 

we obtain an isomorphism from PS to a free As-module by extension of scalars. 

Now consider p. If x E M, then we can write xm = vby with y E N. So we can write 

any element in A as a sum of a polynomial in v and an element which is nilpotent 

modulo ~2’. Hence Ared = k[u], and the canonical quotient map 

A = kA4~g/MkM.M = kM/(N\{ 1)) - k[o] = kM/(M\(v)) 

is a split surjection. This can be seen by observing that (u) c M is extremal [19, 

Lemma 8.31, so we can use Lemma 16. Using the Euclidean algorithm, we can find 

an isomorphism from Fred to a free module, i.e. we can find an invertible matrix Ured 

over Ared such that 

Lifting &d to A via the splitting, we obtain an invertible matrix U over A such that 

IO u.c= o. . ( > 
(Recall that if a module Q is free modulo a nilpotent ideal, then it is free.) Thus, P 

is free. Furthermore, P and PS have the same rank since A is a domain. 

As in Roberts’ theorem, we now proceed to construct a free module F over A from 

the free modules p and Ps, and an isomorphism from P to F. Let XI,. . ,x, be a free 

basis for Ps, for instance the inverse image of the canonical basis of Ai under the 

isomorphism constructed above. Furthermore, let yr, . . . , yr E P be elements such that 

Vr,...,V, is a free basis for 13. We first modify the basis for Ps so that Xi = Ji in Ps. 

Both, {fi} and {jji} are free bases for ps over 2s. Let V be the invertible base 

change matrix which transforms the basis {Zi} to the basis {J,}, with a = det( V). 
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Lemma 31. There exist units b E A and c E As such that a = b. E in As. 

Proof and algorithm. Write a = f/s with s E S and f E A. It is sufficient to show 

that f is a product of a unit in i and an element of 3, which is done in the lemma 

below. 

Observe that A has a graded structure, 

where Ai = {a E A 1 6(a) = i} (see [19, p. 2321). Let d = 6(u). 

Lemma 32. With notation as above, f = (1 + n)g, where n is nilpotent and g = 

v”+%d-I +” . + ao, with ai E Ai. Furthermore, 1 + q is a unit in A, and g E d lies 
in the image of S, so that g E As is the image of a unit from As. 

Proof. Observe first that the image of S in &t = k[u] consists of all manic polyno- 

mials, so that (As)~~~ = k(u). Since f divides an element of S, it follows that up to a 

unit of k, f maps to a manic polynomial in k[o]. Therefore, f E v” + a,&_l +. . + a0 
modulo the nilradical of A. We now compute a decomposition 

f = (1 +n)g> 

with PI nilpotent, and g E @!!,‘Ai. For this we need the following lemma. 

Lemma 33. Let B be the quotient of d module a nilpotent graded ideal, and let M 

be a finitely generated graded B-module, such that multiplication by v E & induces 
an isomorphism v : Mi - Mi+d for all i 1 0. Let f be as above, and z E M. Then 
wecanwritez=fq+rwithqEMandrEMo+...+M,,d_l. Moreover,qandr 
are unique. 

Proof. Let f = fo + . . + fm, with fi homogeneous of degree i. Then f&+1,. . . , fm 
and fnd - v” are nilpotent, and therefore generate a homogeneous nilpotent ideal J. 
Compute a nonnegative integer h such that Jh = 0. We proceed by induction on h. If 

h = 0, then we can simply use the usual division algorithm. Now let h > 0, and 

N = {x E ii 1 vkx E Jh-’ for some k 2 0) = U(J~-’ : ok). 

k20 

To compute N observe that this union is actually finite, since (Jh-‘: vk) c (Jh-’ : uk+’ ), 
so that we obtain an increasing sequence of ideals, and A is noetherian. Now observe 

that N is a graded ideal of A, and multiplication by v induces an isomorphism Ni - 

N<+d, Since 

Ni = N n pi Z N n 2i+d = Ni+d. 
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Therefore, the same is true for A/N. Furthermore, A/N is a module over &Jh-’ and 

N is a module over i/J. By induction the conclusion applies to N and to AIN. So we 

can write 

z=fq+Y 

in A/N. Now lift back to A to obtain 

z=fq+r+w, 

with w E N. Write w = fq’ + Y’, so that z = f(q + q’) + Y + Y’. 0 

Now apply this lemma to M = A and z = v”. We obtain v” = fq + r. Modulo 

the nilradical, f has the form v” + &d-r + . . + a~. Substitution gives that 4 = 0 in 

A/nil(A), so that q = 1 + p with p nilpotent. Therefore q is a unit, with inverse 1 + q, 

This completes the proof of Lemma 32. 0 

Returning to the proof of Proposition 27, we have now factored a = det( V) = b . 2 

in As. We now change the basis {xi} for Ps by the invertible matrix 

c-lo 0 . ..o 
010 0 

i I . . 

oo... 1 

and the basis {y;} for I’ by a similar matrix, replacing c-l by b-l. Now the new base 

change matrix V over As has determinant one. But As is a local ring [19, p. 23 11, so 

SL,(&) = E,(&). An explicit factorization of a determinant one matrix into a product 

of elementary matrices can be obtained as follows. Use the fact that for an element x 

in a local ring, x or 1 - x is a unit to see that the first column must contain a unit. 

Now carry out Gauss-Jordan elimination by induction. 

This shows that we can lift the base change matrix V to an invertible matrix v over 

As. Now change the basis {xi} by the matrix 8-l. The resulting basis has the property 

that X, = ji in As for all i = 1,. . . , t. 

We now proceed as in the proof of Lemma 21. Let P’ = xi A . xi be the free 

A-submodule of Ps generated by the Xi. We will construct an isomorphism between P 

and P’. Let a = Ca;xi E A S. We can write ui = f/g with g manic. Write f = qg + r 

as in Proposition 29. Then 

f 
-=q+;, 
9 

with deg(r) < deg(g). Thus, 

U = C’Xi + CqjXi. 
Yi 
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For each i, write xi = wi/hi with Wi E P and hi E S, then 

WI qixi = qi- = 
q:hi + ri i-j 

h hi 
wi = q;w, + GW” 

with deg(r:) < deg(hi). We obtain a similar decomposition for rixi. Now apply these 

decompositions to the elements Xj - yj to obtain 

x. - yj = C&w, + Ch-w. J gil II’ 

with deg(fi) < deg(gi) and h, E A. It is shown in [19, p. 232; 9, p. 1161 that the 

elements 

xj + Chiwi, j=l t ,..., 2 

form a free A-basis for P. This completes the proof of Proposition 26. 0 

To complete the proof of Proposition 25, let P be a projective kM-module. Then 

we can find a free basis for PA, where Jll is the maximal ideal of kN generated by 

N* \{ 1). The proof of Proposition 25 is now complete. 0 

Now consider the Karoubi square 

kN* - kM* 

1 1 
kN,‘& - kM,*,, . 

Let P be a projective module over kM*, and assume that we can find a free basis for 

projective modules over kN*. We have just completed an algorithm for finding a free 

basis of P4* over kM>,. Now use the Patching Algorithm 2 to construct a projective 

module Q over kN* which extends to P. By hypothesis we can find a free basis for 

Q, thereby obtaining a free basis for P. 

We summarize the results of this section. 

Algorithm 6 (Local Algorithm) 

Input: A nondegenerate pyramidal extension N c M of normal toric monoids, and a 

finitely generated projective module P over kM*, presented by a matrix A with entries 

in kM*. 

Output: An invertible matrix U over kM,>. such that 

We proceed by induction on the rank of M. If rk(M) = 1, then kM = kM* is 

a polynomial ring in one variable and one can find a free basis for P by using the 

Euclidean algorithm. So we may assume that rk(M) > 1. 
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Step 1: Compute homothetic submonoids N@) c MC”) so that the entries of A are 

contained in MC*). Hence P can be viewed as a module over k-M@). Replace M by 

M@), similarly for N. 

Step 2: In this step we compute a free basis for the kMm-module P (Proposi- 

tion. 26). Let u be a vertex of the extension N c M. View P as a module over kM[v-‘I. 

Step 2.1: Find a free basis for P over kM[u-‘1 as follows. Observe that 

kM[u-‘1 ” k[(M, v-‘)I, 

and 

(M,d) ” M’ x (II) ” M’ x z. 

Since rk(M’) < rk(M), we can compute free bases for projective kM’-modules induc- 

tively. Now use the induction algorithm 5 on the monoid M’ x Z to find a free basis 

for P over kM[u-‘1. 

Step 2.2: Now use the algorithm of Proposition 27 to compute a free basis for P 

over kMm, with resulting base change matrix U’. 

Step 3: Extending scalars to the original monoid ring kML,, we obtain the desired 

base change matrix U = U’. q 

Algorithm 7 (Extension) 

Input: A normal toric monoid A4 and a nondegenerate pyramidal extension N c M, 

as well as a projective module P over kA4*, presented by a matrix A with entries in 

kM’. 

Output: A projective module Q over kN*, presented by a matrix B with entries in 

kN*, together with an isomorphism Q g P over kM*. 

Consider the Karoubi square 

kN* - kM* 

1 1 
(kNL* - kM&,, 

where M’ is the maximal ideal of kN* generated by N*\{ 1). 

Step 1: View P as a module over kM&, by extension of scalars. Now use the Local 

Algorithm to compute a free basis for P over this ring. 

Step 2: Use the Patching Algorithm 3 to construct a projective module Q over kN* 

which extends to P. 0 

7. Admissible sequences 

Let M be a normal toric monoid. 
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Definition 34. A sequence of submonoids 

M = Mo,M ,,..., M, 

of M is an admissible sequence if each Mi is a normal toric monoid, and for each i, 

either 

(i) Mi+l CM, is a nondegenerate pyramidal extension, or 

(ii) M, CM;+,. 

A sequence will be called weakly admissible if we do not require the pyramidal ex- 

tensions to be nondegenerate. 

The objective of this section, Algorithm 9, is to construct an admissible sequence 

of submonoids starting with a normal toric monoid M and ending with a free monoid 

F contained in M*, with gp(F) = gp(M). The construction will proceed by induction 

on the rank of M. Before describing the details, we give an overview. 

To begin, by using Lemma 10, we find a free monoid F contained inside M* 

with gp(F) = gp(M) with which the admissible sequence will end. Then, applying 

Proposition 35, which uses the extremal submonoids of M, we find an admissible 

sequence 

M = Mo,MI ,..., M~sM*. 

After obtaining a submonoid Mk which lies entirely within M’, we find by means of 

Lemma 37 a homothetic transformation of M such that some homothetic submonoid 

M(“) lies strictly between Mk and M; thus we can extend to the admissible sequence 

M = Mo,M ,,..., Mk,M(“‘). 

Since homothetic transformations behave well with respect to nondegenerate pyramidal 

extensions, 

M =Mo,M ,,..., Mk,M(“‘),My) ,..., Mj”” 

is also an admissible sequence. By repeatedly applying the homothetic transformation 

and normalizing, we can continue to extend the sequence: 

M , . . . ,k&,k@ , . . ,Mlm), (M(“‘))(“‘) = (M(m))2,. . , (Mj”‘)2, (M@)P,. . . 

where (M@))’ denotes the normalization of the image (O,)‘(M). If we choose the 

homothetic transformation f$, so that its center lies in Int(F) for the chosen free monoid 

F, then after a sufficient number s of iterations, we have (M(“‘))S c F*. Consequently, 

we obtain the desired admissible sequence, 

M =Mo,M1 ,..., Mk,M@) ,..., Mk(m),(M(m))2 ,..., (Mcm)&F. 
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Proposition 35 (Swan [ 19, Corollary 11.81). Let M be a normal toric monoid which 

is not free. Then one can find an admissible sequence 

such that Mk GM’. 

Proof and algorithm 

Step 1: Compute the proper extremal submonoids El,. . . , E, of M using Lemma 8. 

Initialize i := 0. 

Step 2: Set i := i + 1 and E := Ei. Since rk(E) $ rk(M), by the Induction 

Hypothesis 1, there is an admissible sequence 

E = Eo,El,..., E,,, 

with E,, a free submonoid of E. Extend the sequence to the weakly admissible sequence 

E,E I,...,& = (XI,. ..,+%+I = (XL.. .,xs),...,& = (1). (4) 

Step 3: We now use (4) to form an admissible sequence for M. Notice that at each 

stage of (4), either Ei > Ei+l is a pyramidal extension or Ei c &+I. Initialize j := 0. 

Step 3.1: If Ej > Ej+l is a pyramidal extension, we can construct a submonoid Mj+I 

such that Mj >Mj+l is a nondegenerate pyramidal extension. 

If the pyramidal extension Ej > Ej+l is nondegenerate, it follows from the definition 

of nondegenerate pyramidal extension that E,,, contains an extremal submonoid D 

such that D n Int(Ej) # 0. Compute generators for D using Lemma 8. Using linear 

algebra, determine a hyperplane H = {z E Rd 1 c .z = 0}, where c = (cl,. . . , cd) E Zd, 
passing through the generators of D. Choose the signs on the vector c so that c .x > 0 

for all x E Ej+l . Define b:M--+Z by ~(x)=c.x. 

If the pyramidal extension Ej > Ej+l is degenerate, it follows from the definition of 

pyramidal extension that Ej+l is an extremal submonoid of Ej. Use Lemma 8 to find 

generators for Ej+I and determine a hyperplane H = {z E Rd 1 c . z = 0} containing 

these generators with c chosen so that c . x 2 0 for all x E Ej. Define 6 : M --f Z by 

6(x) = c .x. 

Once 6 has been defined, use Lemma 8 to find generators for E, and then find a 

hyperplane H = {y E Rd 1 d . y = 0) passing through these generators. Choose the 

signs on d so that d .x > 0 for all x E M. Set 0 : M 4 Z where e(x) = d .x. 

Now define 6k : M + Z as & = 6 - k8. Let {gl, . , gr} be the subset of generators 

of Mi not contained in Ei. By solving a system of r linear inequalities in the variable 

k, find a k such that sk(gj) < 0 for 1 < j < Y. Set Mi+l = {X E Mi 1 Sk(x) 5 0). 

Then one can verify that Mi+l Chfi is a nondegenerate pyramidal extension. Notice 

that Mi+l n Ei = Ei+, , and generators for Mi+l can be found by using a Hilbert basis 

algorithm. 



R. C. Laubenbacher. C. J. Woodburn I Journal of Pure and Applied Algebra I 17 & 118 (1997) 395-429 423 

Step 3.2: If Ej C Ej+l, p ut Mj+l equal to the normalization of (Mj,Ej+l). Generators 

for Mj+l can be found using Lemma 9. 

Step 3.3: Set j := j + 1. If j = m, proceed to Step 4. If j < m and Ej > Ej+l is a 

pyramidal extension, go to Step 3.1. If j < m and Ej c Ej+l, go to Step 3.2. 

Step 4: If i < p, return to Step 2. Once i = p, we have the desired admissible 

sequence. 0 

Example 36. We demonstrate Proposition 35 applied to the two-dimensional monoid 

M = (x,Y) EN* I (x,Y). 
{ 

= ((3,2),(1,1),(1,2),(1,3),(1,4)). 

The proper extremal submonoids of M are EI = ((3,2)) and E2 = ((1,4)). So, 

EI, {(O,O)) and J%, {(O,O)) are weakly admissible sequences. 

First, put 6 : El + Z : (x, y) H x. Then {(O,O)} = {x E El 1 6(x, y) 5 0) as 

desired. Define C$ : M + N as (x, y) H -2x + 3y. Notice that -2x + 3y = 0 is the 

equation of the line corresponding to El with the signs chosen so that 4(x, y) > 0 for 

all (x, y) E M. Then & = (2k + 1)x - 3ky. We want to find k > 1 such that 

&(1,1)=-k+ 1 < 0, 

&(1,2)=-4k+ 1 < 0, 

bk(1,3)= -7k+ 1 < 0, 

&(1,4)= -lOk+ 1 < 0. 

By inspection, one can see that k = 2 works. Thus, if we set 

~1={(x,y)EM/S2(x,y)=5~-6yIO} 

= ((6,5),(1,1),(1,2),(1,3),(1,4)), 

then the sequence M, Ml is admissible. 

Next, to continue the sequence, consider El. Define 6 : E2 -+ Z by (x, y) H y and 

4 : Ml --+ N by (x, y) H 4x - y. Then setting ~54 = -16x + 5y yields an admissible 

sequence M, MI, M2 where 

Mz={(x,y)~M, (-16x+5yIO} 

= ((6,5),(1,1),(1,2),(1,3),(5,16))~M*. 

Lemma 37 (Swan [19, Lemmas 9.2 and 9.31). Let M be a normal toric monoid and 

let N be a submonoid such that N GM*. Then there exists a homothetic submonoid 

MC”‘) with N sM@‘) GM. 
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Proof. Let Om : M ----f M be any homothetic transformation with center z E Int(N). 

First, we claim that MC’) cM(‘+‘) for all i > 1. Let x E A@‘). Then 

Next, we claim that lJM(‘) = M*. Clearly, UM(‘) c M*. Let x E Int(M). By 

definition, xk = yz for some k E N and y E M. Set i = t&y). Then e,(y) = y’z’ = 

xkr E MC’). But MC’) is normal, so x E M @). Consequently, since N sM* and M* is 

not finitely generated, there must be an m E N with N GM(~) sM. Cl 

Algorithm 8 (Algorithm for Lemma 37) 

Input: A normal toric monoid M = (gt , . . . , gt) and submonoid N GM*. 

Output: A homothetic submonoid IV@‘) with N sM(“‘) SM. 

Step 1: If N is finitely generated, set z equal to the product of all the generators of N. 

If N is not finitely generated, let z be any generator of N such that z E Int(N). Define 

~:M-,Nby~(x)=xl+~~~+x~wherex=(x~,...,x~)~M.Let~,:M-tM 

be the homothetic transformation with center z defined by e,(x) = xmz@@). Initialize 

m := 0. 
Step 2: Set m := m + 1. Using Lemma 13, compute generators for A4@). If 

N sM(“‘) SM. we are done; otherwise repeat Step 

by the proof of Lemma 37 above. q 

Example 38. Continuing with the previous example, 

2. This process must terminate 

we apply Lemma 37 to 

(x,Y> E N2 I by> 

= ((3,2),(1,1),(1,2),(1,3),(1,4)), 

(x,Y) E N* I (x,Y) (-;” 3 5 (‘,O)} 
= ((65),(1,1),(1,2),(1,3),(5,16)), 

F = (x, Y> E N2 I (x, Y> 

= ((1,1),(1>2)). 

Let z = (1,1) + (1,2) = (2,3) and define $ : M -+ Z by (x,y) H x + y. Then 

0, : A4 + A4 is defined by 8,(x, y) = m(x, y) + (x + y)(2,3). Notice d&3,2) = 

(10+3m,15+2m) and&,(1,4)=(10+m,15+4m).Recall we wantNSM(“)sM*. 

So, set m = 22, the smallest m such that 

2 2m-t15 5 

-?z-E+10 3 
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and 

16 15+4m <4 

5<- . lO+m 

Thus, we have extended our admissible sequence to 

M = (x,Y) E N2 I by> (,” T3) 5 (0.0)) 
= ((3,2),(1,1>,(1,2),(1,3),(1,4)), 

(x,Y)EN’ Iby) (,” Y6) 5 w} 
= ((6,5),(1,1),(1,2),(1,3),(1,4)), 

@,.Y)EN* Iby) 

= ((6,5),(1,l),(L2),(L3),(5,16)), 

Mc2*) = (x, y) E N* 1 (x, y) ( -g3 :;6) I (O,O)), 

which by Lemma 39 below, can be 

M,M1,M2,M(22),M1(22),M2(22). 

extended further to the admissible sequence 

Lemma 39. Let M be a normal toric monoid and N CM a nondegenerate pyramidal 

extension. Let em be a homothetic transformation with center z E Int(N). Then 
N@‘j c MC”) also forms a nondegenerate pyramidal extension. 

Proof. Assume N CM is a nondegenerate pyramidal extension with 6 : M --f Z such 

that N = {x E M 1 6(x) 5 0) and v E M\N with M integral over (v, N). Then one 

can verify that NC”) c Mcm) fo rms a nondegenerate pyramidal extension with respect 

to 68, and v. 0 

Lemma 40. Let M = (gl, . . , gt) be a normal toric monoid and let F c M* be a free 
monoid with gp(F) = gp(M). Let 8, : M -+ M be a homothetic transformation with 

center z E Int(F). Then after a finite number s of iterations, (M@“))S c F*, where 
(M@))$ is the normalization of (e,)S(M). 

Proof. This result follows directly from Lemma 14. 0 

Example 41. We now apply Lemma 40 to the above example. Recall 

by) E N2 I (x,Y) (1” T3) I: (W} 
= ((3>2),(1,1),(1,2),(1,3),(1,4)), 
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(x, y) E N2 1 (x, y) (-:2”” _y6) I (O,O)}, 

(x>Y) E N2 I (x>Y> 

= ((Ll),(lJ)), 
z=(2,3). 

We want p large enough so that (3,2) + p(2,3), (1,4) + p(2,3) E Int(F), i.e. 

1 < 2+3~ 4+3p - 3+2p and 1+2p < 2 . 

The smallest such p is p = 3. If we set s = pm = 3(22) = 66, then 

(M(22))66 = (x, y) E N2 1 (x, y) ($ WV}cF, 
where 

a = -8853803609322864800478421182048227632384771108443008831030103366567517827048965249682918655371, 

b = 88537956490687864887736669536704141562307924017832909006082274160386482330378469499773547373963, 

c = 59025291060035112738983189310506405247948651500789076120018389522709538896900449167064136369074, 

d= -59025370662575895856030731594284540009488438567386255424237149027998234837011632163773507650482. 

M,Ml,M2,M(22),M!22),M2(22), (M(22))2, (M,(22))2, (M,(22))2,. . . , (M(22))66,F 

is an admissible sequence beginning with M and ending with F. 

Algorithm 9 (Forming an admissible sequence) 

Input: A normal toric monoid M = (91,. . , go. 

Output: An admissible sequence 

M =Mo,...,M,, = F, 

where F c M* is a free monoid with gp(F) = gp(M). 

Step 1: Using Lemma 10, find a free monoid F c M’ with gp(F) = gp(M). 

Step 2: Apply Proposition 35 to form an admissible sequence M = Mo,Ml, . . ,Mk 

with Mk c M*. 

Step 3: Construct a homothetic submonoid M@) with center z E Int(F) such that 

Mk GM(~) SM by using Lemma 37. 

Step 4: By Lemma 39, extend to an admissible sequence 

M = Mo,M ,,..., kfk,M(m),M1(M) ,..., ML”‘. 



R. C. Laubenbacher, C. J. Woodburn I Journal of Pure and Applied Algebra I1 7 & 1 I8 (1997) 395-429 421 

Step 5: By direct calculation, find a p 2 0 such that Z’gi E Int(F) for i = 1,. . . , t. 

Set s = pm. Then, by Lemma 40, extending to 

M = Mo,M,, . . . ,Mk,M(m),Mjm), . . . ‘Mk(“)’ (M(“))* . . . , (M(qS,F, 

yields the desired admissible sequence. q 

8. The algorithm 

In this section we summarize the algorithm with the steps in their natural order. 

Algorithm 10 (QS-Algorithm) 

Input: 

(i> 

(ii) 

A toric monoid M, described in terms of generators and relations. The monoid ring 

kM can then be described as the quotient of a polynomial ring over k modulo the 

binomial ideal of defining relations [7, Theorem 7.1 I]; 

a finitely generated projective kM-module P of rank t, presented as the cokernel 

of a matrix A: 

(kM)” 5 (kM)m + P - 0. 

Output: An invertible matrix U with entries in kM such that 

where I denotes an identity matrix of size (m - t) x (m - t). The last m - t rows of 

U form a free basis for P. 

The algorithm proceeds by induction on the rank of M. If rk(M) = 1, then kM is a 

polynomial ring in one variable, so we can find U by using the Euclidean algorithm. 

Step 1: Compute the normalization A? of M. Since h?* = M’ [19, Lemma 6.61, we 

can replace M by ti and assume from now on that M is normal. 

Step 2: Compute all extremal submonoids El,. . , E, of M (Lemma 8), listed in 

order of increasing rank, as in Section 4. 

Step 3: Carry out the Reduction Algorithm 3 to compute a projective module Q 

over kM* and an isomorphism from Q to P over kM. 

Step 4: Find a free monoid F CM* and an admissible sequence 

M =MO,M ,,..., M, = F 

(Admissible Sequence Algorithm 9). 

Step 5: Set i = 0, and Qo = Q. While i < s - 1 do: 

If Mi CMi+l, then set Qi+l = Qi, viewed as a kMi+, -module by extension of scalars. 

Otherwise, apply the Extension Algorithm 7 to the nondegenerate pyramidal exten- 

sion Mi+l CMi to construct a projective module Qi+l and an isomorphism from Qi+, 

to Qi over kMi. 
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Set i:=i+ 1. 

Step 6: Apply the Logar-Sturmfels algorithm to find a free basis for the module Qs 

over the polynomial ring kF. 

Step 7: Extend the resulting base change matrix in the free presentation of Qs to 

kM to obtain the desired matrix U. 0 

Corollary 42. There is a QS-algorithm over Laurent polynomial rings. 

Proof. Let A4 = Z’, then R = kM = k[$‘, . . . ,xF’ 1. Consider the commutative dia- 

gram 

k[xf’ ,...>q-1 *’ ] - 

I T 
1 
k > k&‘]. 

It is a Milnor square, and the right vertical map, which sends the first r - 1 variables 

to 1, is a split epimorphism. The Induction Algorithm applies to the lower right-hand 

comer, viewed as the monoid ring of the monoid { 1) x Z. The Patching Algorithm 1 

applies to carry out an induction argument. 0 

Remark 43. The same type of argument allows the extension of the algorithm to mo- 

noids which do contain nontrivial units, alternatively, to all subrings of Laurent poly- 

nomial rings which are generated by monomials and are seminormal [ 19, Theorem 1.1 ‘I. 
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